Problem 1.35

A golf ball is hit from ground level with speed v_{o} in a direction that is due east and at an angle θ above the horizontal. Neglecting air resistance, use Newton's second law (1.35) to find the position as a function of time, using coordinates with x measured east, y north, and z vertically up. Find the time for the golf ball to return to the ground and how far it travels in that time.

Solution

Start by drawing a free-body diagram of the golf ball. Because there's no air resistance, there's only a gravitational force acting on the ball.

Newton's second law states that the sum of the forces on the ball is equal to its mass times acceleration.

$$
\sum \mathbf{F}=m \mathbf{a} \Rightarrow\left\{\begin{array}{l}
\sum F_{x}=m a_{x} \\
\sum F_{y}=m a_{y} \\
\sum F_{z}=m a_{z}
\end{array}\right.
$$

The only force is due to gravity, and it's in the negative z-direction.

$$
\left\{\begin{aligned}
0 & =m a_{x} \\
0 & =m a_{y} \\
-m g & =m a_{z}
\end{aligned}\right.
$$

Divide both sides of each equation by m.

$$
\left\{\begin{aligned}
0 & =a_{x} \\
0 & =a_{y} \\
-g & =a_{z}
\end{aligned}\right.
$$

Acceleration is the second derivative of position.

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d t^{2}}=0 \\
\frac{d^{2} y}{d t^{2}}=0 \\
\frac{d^{2} z}{d t^{2}}=-g
\end{array}\right.
$$

Integrate both sides of each equation with respect to t to get the components of the ball's velocity.

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=C_{1} \tag{1}\\
\frac{d y}{d t}=C_{2} \\
\frac{d z}{d t}=-g t+C_{3}
\end{array}\right.
$$

The initial velocity in the x-, y-, and z-directions are $v_{\mathrm{o}} \cos \theta, 0$, and $v_{\mathrm{o}} \sin \theta$, respectively.

$$
\begin{array}{lll}
\frac{d x}{d t}(0)=C_{1}=v_{\mathrm{o}} \cos \theta & \rightarrow & C_{1}=v_{\mathrm{o}} \cos \theta \\
\frac{d y}{d t}(0)=C_{2}=0 & \rightarrow & C_{2}=0 \\
\frac{d z}{d t}(0)=-g(0)+C_{3}=v_{\mathrm{o}} \sin \theta & \rightarrow & C_{3}=v_{\mathrm{o}} \sin \theta
\end{array}
$$

As a result, equation (1) becomes

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=v_{\mathrm{o}} \cos \theta \\
\frac{d y}{d t}=0 \\
\frac{d z}{d t}=-g t+v_{\mathrm{o}} \sin \theta
\end{array}\right.
$$

Integrate both sides of each equation with respect to t once more to get the components of the ball's position.

$$
\left\{\begin{array}{l}
x(t)=v_{\mathrm{o}} t \cos \theta+C_{4} \tag{2}\\
y(t)=C_{5} \\
z(t)=-\frac{g t^{2}}{2}+v_{\mathrm{o}} t \sin \theta+C_{6}
\end{array}\right.
$$

The ball's initial position is the origin, so $x=0, y=0$, and $z=0$ when $t=0$.

$$
\begin{array}{lll}
x(0)=v_{\mathrm{o}}(0) \cos \theta+C_{4}=0 & \rightarrow & C_{4}=0 \\
y(0)=C_{5}=0 & \rightarrow & C_{5}=0 \\
z(0)=-\frac{g(0)^{2}}{2}+v_{\mathrm{o}}(0) \sin \theta+C_{6}=0 & \rightarrow & C_{6}=0
\end{array}
$$

Consequently, equation (2) becomes

$$
\left\{\begin{array}{l}
x(t)=v_{\mathrm{o}} t \cos \theta \\
y(t)=0 \\
z(t)=-\frac{g t^{2}}{2}+v_{\mathrm{o}} t \sin \theta
\end{array} .\right.
$$

Therefore, the ball's position is

$$
\mathbf{r}(t)=\left\langle v_{\mathrm{o}} t \cos \theta, 0,-\frac{g t^{2}}{2}+v_{\mathrm{o}} t \sin \theta\right\rangle .
$$

To find how long the ball is in the air for, set $z(t)=0$ and solve for nonzero t.

$$
\begin{gathered}
z(t)=-\frac{g t^{2}}{2}+v_{\mathrm{o}} t \sin \theta=0 \\
t\left(-\frac{g t}{2}+v_{\mathrm{o}} \sin \theta\right)=0 \\
t=0 \quad \text { or } \quad-\frac{g t}{2}+v_{\mathrm{o}} \sin \theta=0 \\
t=0 \quad \text { or } \quad t=\frac{2 v_{\mathrm{o}} \sin \theta}{g}
\end{gathered}
$$

Now plug this nonzero time into $x(t)$ to determine how far the ball travels while it's in the air.

$$
x\left(\frac{2 v_{\mathrm{o}} \sin \theta}{g}\right)=v_{\mathrm{o}}\left(\frac{2 v_{\mathrm{o}} \sin \theta}{g}\right) \cos \theta
$$

Therefore, $\operatorname{since} \sin 2 \theta=2 \sin \theta \cos \theta$, the ball travels eastward a distance

$$
x\left(\frac{2 v_{\mathrm{o}} \sin \theta}{g}\right)=\frac{v_{\mathrm{o}}^{2} \sin 2 \theta}{g} .
$$

